

Small Waves Big Impact: Sensing Millimetre/Submillimetre Waves from Space

Manju Henry

Millimetre Wave Technology & Chilbolton Observatory Group, RAL Space

Science and Technology Facilities Council

1 THz = 10¹²Hz = 1,000GHz - ITU defined range 0.03THz to 3THz – Millimetre/Submillimetre-wave region.

Small Waves.....THz photon energy is small (~meV) but lots of impact.

Millimetre/Submillimetre (THz)-Unique Attributes

- Low energy implies non ionising and considered safe for human exposure when compared with X-rays.
- Able to penetrate clothing and various dielectric materials that are opaque in visible and infrared.
- Target spatial imaging is possible as is,
- Spectral chemical analysis of molecular species, e.g. H₂O, NOx, CO, O₃, O₂, etc.
- Increasing potential for ultra-high data rate communication.
- Substantial science impact (next slide).

Passive Terahertz Screening

Spectral Simulation @ 1.14 THz

Science and Technology Facilities Council THz Communication-Different range applications

RAL Spa

THz Science Applications

Astronomy:

- Study the cold interstellar medium and cosmic background.
- Understand stellar and galactic formation, and evolution of the universe.

• Solar System:

- Study planetary atmospheres (gas giants) and comets.
- Provides information relating formation of the solar system.
- ✤ In situ/close encounters best resolution, no THz landers yet.

Earth Observation (EO):

- Study Earth's upper and lower atmosphere for,
- ♦ Weather forecasting and climate change.

RAL S

Astronomy Observations

- Possible to construct large-scale ground based THz observatories, but...
- Atmospheric transmission is limited by Earth's atmosphere, even at excellent sites.

The Atacama Large Millimetre/submillimetre Array (ALMA) Chajnator Atacama – Credit ESO

Higher Altitude is Good

• Airborne observatories improve transmission.

SOFIA Airborne Observatory

Black Line atmospheric transmission from SOFIA. Red is a good ground site.

- Conditions are still not perfect and flights are expensive.
- For astronomy, no atmospheric attenuation = perfect seeing conditions. So...

Space is Best

esa

- Low Earth orbit (LEO) 160km to 2,000 km
- Medium Earth orbit (MEO) 2,000 km to <35,768 km
- Geostationary Earth orbit (GEO) 35,768 km
- Lagrangian Points stable orbits.
- Beyond solar and planetary exploration.

Int. Space Station in LEO

Science and Technology Facilities Council

Lagrangian Points

THz Astronomy Mission Example - Herschel HIFI RAL Space

- Heterodyne Instrument for the Far Infrared (HIFI).
- Objective:
 - Study evolution of galaxies, star and planet formation.
- Payload Located in the focal plane of the 3.5 metre diametre telescope.
- Seven superconducting heterodyne receiver channels 0.5 to 1.9THz
- Spectral res. ~0.1 to 1MHz.
- Lifetime: Achieved 3 years at L2 location.
- Used liquid helium coolant.

The HIFI instrument payload - ESA

Science and

Technology Facilities Council

THz Astronomy Mission Example - Planck

- Planck CMB observatory
- THz imaging camera and low-res. spectrometer
- 1.5m antenna primary with offset secondary.
- Low frequency instrument (LFI) 30GHz to 75GHz cooled to ~20k.
- High frequency instrument (HFI) 0.1THz to 0.9THz cooled to 0.1K.

Whole sky image from the Planck Observatory - ESA

Science and Technology Facilities Council

Planck HFI Unit -ESA

THz Earth Observation form Space

- Can view atmospheric species that are not visible from the ground.
- Can see through aerosols that obscure the visible and infra-red.
- Allows study and monitoring of climate.
- Also supports weather forecasting.
- Polar orbit provides full global coverage.

EO Mission Example- MetOp SG

- Second generation of polar orbiting satellites in low Earth orbit.
- Provides temperature, humidity, wind speed, trace gases, land and ocean images
- Supplies continuity of weather monitoring and observation to beyond 2040.
- Multiple payload on satellites A and B (3 pairs).
- Microwave sounder (MWS), Microwave imager (MWI) and ice cloud image (ICI) using THz technology to ~600GHz.
- First launch ~2022 with subsequent ~ 7 year paired launch interval.
- Total system lifespan >20 years.

MetOp SG Receiver Technology

• Receiver payloads for MWS, MWI and ICI above 100GHz use heterodyne systems.

Technology mix of semiconductor amplifier, mixer and local oscillators.

•

Space qualified RAL flip chip diode for MetOp-SG

MetOp-SG – Satellite deployment for 20+ years

MetOp-SG integrated receiver module concept

RAL 183GHz Mixer and Diode (inset image)

183GHz Low Noise Amplifier Front-End

Science and Technology Facilities Council

MetOp SG Receiver Technology

MWS Front End Receiver 229 GHz Engineering Qualification Model (EQM)

MetOp-SG Microwave Sounder

Front End Receiver 229GHz EQM

Science and Technology Facilities Council

MetOp SG Receiver Technology

MWI Front End Receivers

MWI FERX 166 EQM

MWI FERX183 EQM

MetOp SG MWS On-ground Calibration

- MWS is a cross track scanning passive radiometer, operating from 23 to 229 GHz.
- Accurate calibration of MWS is essential to reduce the returned temperature uncertainty to ± 0.1 K.
- Pre-launch instrument level calibration required under thermal vacuum conditions.
- The calibration system contains a "cold" black body target, operating at close to 80 K, which replaces the view of cold space and a "Earth" target, which is variable in temperature from 80 to 315K.
- Target absorption better then 99.9999%

-10 Reflectivity (dB) -20 -30 Requirement <-45 dB -40 -50 -60 -70 -80 100 120 140 160 180 200 220 20 40 60 80 Frequency (GHz)

Calibration Load measured Reflectivity on a prototype target

Science and Technology Facilities Council

MWS instrument On-ground calibration rig

Next Generation MetOp – TG

Spectroscopic-system for EnviRonmental MONitoring (SERMON)

- SERMON is a HYper-Spectral Microwave Sounder (HYMS) demonstrator instrument.
- An emerging remote sensing technique that provides improved atmospheric retrievals through detailed spectral profiling.
- Proof of concept will remote sense two well known molecular species O₂ and H₂O (~60 GHz and 183 GHz) with fine (~3MHz) spectral resolution.
- Future application to CubeSat/Small sat configuration.

60 GHz Radiometer, Tsys ~170 K Sideband Rejection >40 dB

Ultra-Wideband High-Resolution Spectrometer (STAR Dundee), 8 GHz Instantaneous BW and 1 MHz spectral resolution

Science and Technology Facilities Council

Facility for Airborne Atmospheric Measurements (FAAM) BAE-146 and UK Met Office's DEIMOS instrument.

A constellation of identical 3U CubeSats provide sounding. The CubeSat at the left has a temperature profile of a simulated Tropical Cyclone from a Numerical Weather Prediction model. (image credit: MIT/LL, NASA)

CONCLUSIONS

- The THz Spectral region is region important for science-Earth Observation and astronomy.
 - Provides key astrophysical information relating to stellar and galactic evolution.
 - Is an important remote sounding probe of Earth's atmosphere.
- THz observation from space will increase with MetOP-SG and small generations in constellation forms.
- Many wider operational benefit– weather prediction, security, transportation, process control, gas sensing, telecommunications.....
- Wave energies might be small, but what they impact is high!

Small Wave Big Impact – First Black Hole Image

Event Horizon Telescope (EHT)

